67 research outputs found

    Rate Optimal design of a Wireless Backhaul Network using TV White Space

    Full text link
    The penetration of wireless broadband services in remote areas has primarily been limited due to the lack of economic incentives that service providers encounter in sparsely populated areas. Besides, wireless backhaul links like satellite and microwave are either expensive or require strict line of sight communication making them unattractive. TV white space channels with their desirable radio propagation characteristics can provide an excellent alternative for engineering backhaul networks in areas that lack abundant infrastructure. Specifically, TV white space channels can provide "free wireless backhaul pipes" to transport aggregated traffic from broadband sources to fiber access points. In this paper, we investigate the feasibility of multi-hop wireless backhaul in the available white space channels by using noncontiguous Orthogonal Frequency Division Multiple Access (NC-OFDMA) transmissions between fixed backhaul towers. Specifically, we consider joint power control, scheduling and routing strategies to maximize the minimum rate across broadband towers in the network. Depending on the population density and traffic demands of the location under consideration, we discuss the suitable choice of cell size for the backhaul network. Using the example of available TV white space channels in Wichita, Kansas (a small city located in central USA), we provide illustrative numerical examples for designing such wireless backhaul network

    Implementation of Distributed Time Exchange Based Cooperative Forwarding

    Full text link
    In this paper, we design and implement time exchange (TE) based cooperative forwarding where nodes use transmission time slots as incentives for relaying. We focus on distributed joint time slot exchange and relay selection in the sum goodput maximization of the overall network. We formulate the design objective as a mixed integer nonlinear programming (MINLP) problem and provide a polynomial time distributed solution of the MINLP. We implement the designed algorithm in the software defined radio enabled USRP nodes of the ORBIT indoor wireless testbed. The ORBIT grid is used as a global control plane for exchange of control information between the USRP nodes. Experimental results suggest that TE can significantly increase the sum goodput of the network. We also demonstrate the performance of a goodput optimization algorithm that is proportionally fair.Comment: Accepted in 2012 Military Communications Conferenc

    Coordinated Dynamic Spectrum Management of LTE-U and Wi-Fi Networks

    Full text link
    This paper investigates the co-existence of Wi-Fi and LTE in emerging unlicensed frequency bands which are intended to accommodate multiple radio access technologies. Wi-Fi and LTE are the two most prominent access technologies being deployed today, motivating further study of the inter-system interference arising in such shared spectrum scenarios as well as possible techniques for enabling improved co-existence. An analytical model for evaluating the baseline performance of co-existing Wi-Fi and LTE is developed and used to obtain baseline performance measures. The results show that both Wi-Fi and LTE networks cause significant interference to each other and that the degradation is dependent on a number of factors such as power levels and physical topology. The model-based results are partially validated via experimental evaluations using USRP based SDR platforms on the ORBIT testbed. Further, inter-network coordination with logically centralized radio resource management across Wi-Fi and LTE systems is proposed as a possible solution for improved co-existence. Numerical results are presented showing significant gains in both Wi-Fi and LTE performance with the proposed inter-network coordination approach.Comment: Accepted paper at IEEE DySPAN 201
    corecore